比NMN強4倍,還原型NADH是新晉『長壽神藥』?不好意思,可能更折壽。

在眾多研究和商家的推動下,NAD+家族已經被神化成了『長生不老藥』。而作為NAD+的直接前體,NMN是其中的佼佼者,最近更是借著股市的威勢乘風破浪。距離NAD+同樣一步之遙的NADH,帶了『氫』,還原型NAD+的加持,效果似乎更勝一籌。一些商家甚至稱,NADH直接轉化NAD+強力延壽,效果上更是四倍於NMN。

真的如此麼?

01

NAD+與NADH:有聯系,但區別更大

煙酰胺腺嘌呤二核苷酸《NAD+》是生物體內許多脫氫酶《/氧化酶》的輔酶,有傳遞氫和電子的功能,在接收別的物質被氧化後脫下來的氫和電子之後,NAD+就變為了還原型煙酰胺腺嘌呤二核苷酸《NADH》[1]。

圖註:NAD+的加氫和NADH的脫氫反應相互轉化

NAD+和NADH在細胞內各種基礎生化反應中相互轉化。但一般來說,細胞質內的NAD+/NADH比值約為60-700,線粒體內的NAD+/NADH比值保持在7-8[2,3]。這種NAD+明顯多於NADH的數量關系才能維持正常的線粒體膜電位,保證正常的線粒體功能和細胞能量代謝[4-6]。

圖註:NAD+/NADH參與糖代謝和生物氧化《@TRENDS in Endocrinology & Metabolism,時光派編譯》

NAD+/NADH的生物學作用,就同『綠巨人浩克』與變身前『班納』一樣,之間有聯系,可區別也很大:至少,NAD+通過激活長壽蛋白Sirtuins來延緩衰老的功能,NADH就是沒有的。

圖註:NAD+與NADH的生物學作用《WEIHAI YANG,et al.》

其中還值得拿出來一講的是NADH會引發『還原性應激』,很多人看到NADH名字裡的『還原型』三個字,會想當然地把它認定為還原劑。但是研究已經證明了,過量的NADH會加速ROS生成,加重氧化[10,11],『還原型』反倒成了NADH的原罪。

圖註:NAD+/NADH與氧化還原和衰老過程的關系《WEIHAI YANG,et al.》

02

NADH還可能讓你的『長壽藥』白吃

目前針對NAD+的研究已經證實了:隨著年齡增長,某些組織內NAD+不斷減少;很多人不知道的是,NADH在這個過程中也在不斷增加,與老化相關[18]。

圖註:人類腦細胞中總NAD、NAD+和NADH水平隨年齡變化[18]

NAD+和NADH之間還有著一種『此消彼長』的關系:一項研究讓受試者補充NADH,在用藥8周後測定血液單核細胞內NAD+和NADH含量,結果發現細胞內NAD+水平下降,NADH水平上升,NAD+/NADH比值下降[19]。

圖註:補充NADH 8周後血單核細胞內NAD+、NADH水平和NAD+/NADH變化[19]

熱量限制《CR》是目前公認最有效的『續命』方式,它就是通過調節Sir2降低NADH水平、升高NAD+/NADH比值來起到延壽的作用[20]。

圖註:NAD+/NADH ——『天平的兩端』

綜上所述,我們認為:以目前的研究來看,外源性補充NADH會提升細胞內NADH水平,降低NAD+水平,可能不利於延長壽命。如果和NMN、NR這類NAD+補充劑『長壽藥』同服,最終的結果是花了雙份錢卻 『吃了個寂寞』。

把NADH包裝成『長壽藥』的商人,其實更應該多吃吃自家產品——『救智、補腦』。

03

NADH真正的跑道:可能是神經 『萬靈藥』,卻並非『聰明藥』

NADH真正『跑起來』,是學者們發現了NADH能間接地為酪氨酸羥化酶催化的多巴胺合成限速步驟提供還原當量,促進內源性左旋多巴《多巴胺前體物質》的合成[21];同時也有證據表明,NADH能夠增加血漿左旋多巴的生物利用度[22]。NADH還有著調節線粒體能量代謝、調節鈣穩態、調節大腦基因表達、抗凋亡等多種作用,讓它成為有望成為攀越神經系統疾病治療這座高峰的『種子選手』。

上世紀90年代以來,用NADH治療各種神經系統疾病有效的研究報道一時間如雨後春筍般出現:

改善帕金森病《PD》[23,24]、阿爾茨海默症《AD,『老年癡呆』》 [22]、 『時差病』[25]和慢性疲勞綜合征《CFS》[26,27];甚至有望將其用於治療亨廷頓舞蹈病《HD》、腦外傷後/腦梗死後腦損傷、多發性硬化症《MS》和腦瘤等『絕症』 [28-36]

多巴胺與學習和記憶有著千絲萬縷的聯系[37,38],成就了今天NADH在保健品領域『考生必備‘聰明藥’』的地位,很多人試圖服用它來集中注意力、提升工作學習效率。

圖註:某寶上的NADH『聰明藥』廣告

但是,目前的研究隻證實了服用NADH可能改善病理狀態下《AD、CFS和時差調整狀態》患者的認知功能,在正常人身上的有效性和安全性的研究尚缺。因此,我們也不主張正常人『拿到半截就開跑』,將NADH作為提高記憶和學習能力的補劑來服用。

時光派點評:

對人體自身奧秘的探索過程,和那些試圖解秘森羅萬象的所有科學研究過程都一樣——就像拼圖遊戲,是用碎片去構擬還原出一個全景,這個過程中難免會拼錯那麼一塊兩塊,需要不斷地去修正;我們現在所能看到的是現有拼圖的模樣,可能隻是成品的冰山一角。

所以,我們隻能告訴你,在結合現有研究證據分析之後,我們認為:NADH有潛力成為一款治療許多神經系統疾病的好藥,但未必利於延壽,不建議未患影響認知功能的疾病的正常人把NADH當作補劑去服用。希望NADH早日『青春歸位』,不會再被用來騙人,回到屬於自己的領域去發光發熱!

每次與NAD+代謝流上的相關物質接觸,筆者總能聞到一股難以名狀的『怪味兒』:NAD+利益相關者把NADH貶得一錢不值,NADH把NAD+妖化成洪水猛獸,NAD+各類補充劑再明爭暗鬥……

我想,負責任的科普應該是羅列事實而臧否兩論。我們不反對靠科普來賺錢,所以我們也開起了自己的小店;但是以撈錢為目的而扭曲事實去科普,說實話,真的有點臭。

參考文獻《滑動查看》:

[1] Mitchell P: Keilin’s respiratory chain concept and its chemiosmotic consequences. Science 1979; 206:1148.

[2] Veech,R.L. et al. (1972) The time-course of the effects of ethanol on the redox and phosphorylation states of rat liver. Biochem. J. 127,387–397.

[3] Williamson,D.H. et al. (1967) The redox state of free nicotinamide- adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103,514–527.

[4] Ying,W.(2008)NAD+/NADH and NADP+/NADPH incellular functions and cell death: regulation and biological consequences. Antioxid. Redox Signal. 10,179–206.

[5] Cheng,Z. et al. (2010) Insulin signaling meets mitochondria in metabolism. Trends Endocrinol. Metab. 21,589–598.

[6] Houtkooper,R.H.etal.(2010)The secret life of NAD+:an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31,194–223.

[7] Kirsch M and De Groot H. NAD(P)H,a directly operating antioxidant? F ASEB J 15: 1569–1574,2001.

[8] McGuinness ET and Butler JR. NAD+ kinase—-a review. Int J Biochem 17: 1–11,1985.

[9] Olek RA,Ziolkowski W,Kaczor JJ,Greci L,Popinigis J,and Antosiewicz J. Antioxidant activity of NADH and its analogue—an in vitro study. J Biochem Mol Biol 37: 416–421,2004.

[10] Jaeschke H,Kleinwaechter C,and Wendel A. NADH-dependent reductive stress and ferritin-bound iron in allyl alcohol-induced lipid peroxidation in vivo: the protective effect of vitamin E. Chem Biol Interact 81: 57–68,1992.

[11] Zhang Z,Blake DR,Stevens CR,Kanczler JM,Winyard PG,Symons MC,Benboubetra M,and Harrison R. A reappraisal of xanthine dehydrogenase and oxidase in hypoxic reperfusion injury: the role of NADH as an electron donor. Free Radic Res 28: 151–164,1998.

[12] Kaplin AI,Snyder SH,and Linden DJ. Reduced nicotinamide adenine dinucleotide-selective stimulation of inositol 1,4,5-trisphosphate receptors mediates hypoxic mobilization of calcium. J Neurosci 16: 2002–2011,1996.

[13] Zima AV,Copello JA,and Blatter LA. Differential modulation of cardiac and skeletal muscle ryanodine receptors by NADH. FEBS Lett 547: 32–36,2003.

[14] Zhang Q,Piston DW,and Goodman RH. Regulation of corepressor function by nuclear NADH. Science 295: 1895–1897,2002.

[15] Rutter J,Reick M,Wu LC,and McKnight SL. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293: 510–514,2001.

[16] Nadlinger K,Birkmayer J,Gebauer F,and Kunze R. Influence of reduced nicotinamide adenine dinucleotide on the production of interleukin-6 by peripheral human blood leukocytes. Neuroim-munomodulation 9: 203–208,2001.

[17] Zhu K,Swanson RA,and Ying W. NADH can enter into astrocytes and block poly (ADP-ribose) polymerase-1-mediated astrocyte death. Neuroreport 16: 1209–1212,2005.

[18] Zhu,X.-H.,Lu,M.,Lee,B.-Y.,Ugurbil,K.,& Chen,W. (2015). In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proceedings of the National Academy of Sciences,112(9),2876–2881.

[19] Castro-Marrero,J.,Cordero,M. D.,Segundo,M. J.,Sáez-Francàs,N.,Calvo,N.,Román-Malo,L.,… Alegre,J. (2015). Does Oral Coenzyme Q10 Plus NADH Supplementation Improve Fatigue and Biochemical Parameters in Chronic Fatigue Syndrome? Antioxidants & Redox Signaling,22(8),679–685.

[20] Lin,S. J.,E. Ford,M. Haigis,G. Liszt & L. Guarente: Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev,18,12-6(2004).

[21] Swerdlow,R. H.: Is NADH effective in the treatment of Parkinson's disease? Drugs Aging,13,263-8(1998).

[22] Demarin V,Podobnik SS,Storga Tomic D,and Kay G. Treatment of Alzheimer’s disease with stabilized oral nicotinamide adenine dinucleotide: a randomized,double-blind study. Drugs Exp Clin Res 30: 27–33,2004.

[23] Kuhn W,Muller T,Winkel R,Danielczik S,Gerstner A,Hacker R,Mattern C,and Przuntek H. Parenteral application of NADH in Parkinson’s disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis. J Neural Transm 103: 1187–1193,1996.

[24] Birkmayer,J. G.,C. Vrecko,D. Volc & W. Birkmayer: Nicotinamide adenine dinucleotide (NADH)——a new therapeutic approach to Parkinson's disease. Comparison of oral and parenteral application. Acta Neurol Scand Suppl,146,32-5(1993).

[25] NASA: Stabilized NADH as a Countermeasure for Jet Lag. Report/Patent Number JSC-CN-6528.

[26] Forsyth,L. M.,Preuss,H. G.,MacDowell,A. L.,Chiazze,L.,Birkmayer,G. D.,& Bellanti,J. A. (1999). Therapeutic effects of oral NADH on the symptoms of patients with chronic fatigue syndrome. Annals of Allergy,Asthma & Immunology,82(2),185–191.

[27] Alegre,J.,Rosés,J. M.,Javierre,C.,Ruiz-Baqués,A.,Segundo,M. J.,& Fernández de Sevilla,T. (2010). Nicotinamida adenina dinucleótido (NADH) en pacientes con síndrome de fatiga crónica. Revista Clínica Española,210(6),284–288.

[28] Vis,J. C.,E. Schipper,R. T. de Boer-van Huizen,M. M. Verbeek,R. M. de Waal,P. Wesseling,H. J. ten Donkelaar & B. Kremer: Expression pattern of apoptosis-related markers in Huntington's disease. Acta Neuropathol (Berl),109,321-8(2005).

[29] Virag,L. & C. Szabo: The therapeutic potential of poly (ADP-ribose) polymerase inhibitors. Pharmacol Rev,54,375-429(2002).

[30] Satchell,M. A.,X. Zhang,P. M. Kochanek,C. E. Dixon,L. W. Jenkins,J. Melick,C. Szabo & R. S. Clark: A dual role for poly-ADP-ribosylation in spatial memory acquisition after traumatic brain injury in mice involving NAD+ depletion and ribosylation of 14-3-3gamma. J Neurochem,85,697-708(2003).

[31] LaPlaca,M. C.,J. Zhang,R. Raghupathi,J. H. Li,F. Smith,F. M. Bareyre,S. H. Snyder,D. I. Graham & T. K. McIntosh: Pharmacologic inhibition of poly (ADP-ribose) polymerase is neuroprotective following traumatic brain injury in rats. J Neurotrauma,18,369-76(2001).

[32] Kofler,J.,T. Otsuka,Z. Zhang,R. Noppens,M. R. Grafe,D. W. Koh,V. L. Dawson,J. M. de Murcia,P. D. Hurn & R. J. Traystman: Differential effect of PARP-2 deletion on brain injury after focal and global cerebral ischemia. J Cereb Blood Flow Metab,26,135-41(2006).

[33] Gilgun-Sherki,Y.,E. Melamed & D. Offen: The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol,251,261-8(2004).

[34] Kauppinen,T. M.,S. W. Suh,C. P. Genain & R. A. Swanson: Poly (ADP-ribose) polymerase-1 activation in a primate model of multiple sclerosis. J Neurosci Res,81,190-8(2005).

[35] Tentori,L.,I. Portarena,F. Torino,M. Scerrati,P. Navarra & G. Graziani: Poly (ADP-ribose) polymerase inhibitor increases growth inhibition and reduces G(2)/M cell accumulation induced by temozolomide in malignant glioma cells. Glia,40,44-54(2002).

[36] Tentori,L.,C. Leonetti,M. Scarsella,G. D'Amati,M. Vergati,I. Portarena,W. Xu,V. Kalish,G. Zupi,J. Zhang & G. Graziani: Systemic administration of GPI 15427,a novel poly(ADP-ribose) polymerase-1 inhibitor,increases the antitumor activity of temozolomide against intracranial melanoma,glioma,lymphoma. Clin Cancer Res,9,5370-9(2003).

[37] Liang,L.,Wang,R.,& Zhang,Z. (2012). The Effect of Dopamine on Working Memory. Neural Processing Letters,35(3),257–263.

[38] Roffman,J. L.,Tanner,A. S.,Eryilmaz,H.,Rodriguez-Thompson,A.,Silverstein,N. J.,Ho,N. F.,… Catana,C. (2016). Dopamine D1 signaling organizes network dynamics underlying working memory. Science Advances,2(6),e1501672–e1501672.