NAD +,又名煙酰胺腺嘌呤二核苷酸,它是氧化還原反應的重要輔酶,即能量代謝的中心,同時也是一些蛋白行使功能的重要輔助因子,如與DNA修復有關的PARP蛋白家族[1],與鈣平衡有關的CD38和CD157[2],與軸突損傷和免疫細胞功能相關的SARM1蛋白[3],以及與衰老有關的Sirtuin家族等[4]。NAD +可以直接或間接地影響許多關鍵的細胞過程和功能,如多種能量代謝途徑,DNA修復,染色質重塑,細胞衰老、表觀遺傳[5]和免疫細胞的功能等。這些細胞過程和功能對於維持組織和代謝穩態,特別是個體衰老有著非常重要的作用[6]。
^Bai,P. & Cantó,C. The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease.Cell Metab. 16,290–295 (2012).
^ Mao,S. Architecture of the human TRPM2 channel. Science 362,1372.12–1374 (2018).
^Liu,L. et al. Quantitative analysis of NAD synthesis- breakdown fluxes. Cell Metab. 27,1067–1080.e5 (2018).
^Etchegaray,Jean-Pierre,and Raul Mostoslavsky. "Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes." Molecular cell 62.5 (2016): 695-711.
^Verdin,E. NAD+ in aging,metabolism,and neurodegeneration. Science 350,1208–1213 (2015).
^Lautrup,S.,Sinclair,D. A.,Mattson,M. P. & Fang,E. F. NAD in brain aging and neurodegenerative disorders. Cell Metab. 30,630–655 (2019).
^Covarrubias,Anthony J.,et al. "NAD+ metabolism and its roles in cellular processes during ageing." Nature Reviews Molecular Cell Biology (2020): 1-23.
^abYoshino,Jun,Joseph A. Baur,and Shin-ichiro Imai. "NAD+ intermediates: the biology and therapeutic potential of NMN and NR." Cell metabolism 27.3 (2018): 513-528.
^Gomes,A. P. et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155,1624–1638 (2013).
^Sims,C. A. et al. Nicotinamide mononucleotide preserves mitochondrial function and increases survival in hemorrhagic shock. JCI Insight 3,e120182 (2018).
^Uddin,G. M.,Youngson,N. A.,Sinclair,D. A. & Morris,M. J. Head to head comparison of short-term treatment with the NAD+ precursor nicotinamide mononucleotide (NMN) and 6 weeks of exercise in obese female mice. Front. Pharmacol. 7,258 (2016).
^Lee,C. F. et al. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation 134,883–894 (2016).
^Long,A. N. et al. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurol. 15,19 (2015).
^Martin,A. S. et al. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model. JCI Insight 2,e93885 (2017).
^Tarantini,S. et al. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol. 24,101192 (2019).
^Yoshino,J.,Mills,K.F.,Yoon,M.J.,and Imai,S. (2011). Nicotinamide mononu- cleotide,a key NAD(+) intermediate,treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14,528–536.
^Yao,Z.,Yang,W.,Gao,Z.,and Jia,P. (2017). Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neurosci. Lett. 647,133–140.
^Park,J.H.,Long,A.,Owens,K.,and Kristian,T. (2016). Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol. Dis. 95,102–110.
^Mills,K. F. et al. Long-term administration of nicotinamide mononucleotide mitigates age- associated physiological decline in mice. Cell Metab. 24,795–806 (2016).
^Yoshino,Jun,et al. "Nicotinamide mononucleotide,a key NAD+ intermediate,treats the pathophysiology of diet-and age-induced diabetes in mice." Cell metabolism 14.4 (2011): 528-536.